Influence of Phosphate and Phosphoesters on the Decomposition Pathway of 1,2-Bis(methylsulfonyl)-1-(2-chloroethyhydrazine (90CE), the Active Anticancer Moiety Generated by Laromustine, KS119, and KS119W
نویسندگان
چکیده
Prodrugs of the short-lived chloroethylating agent 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) and its methylating analogue 1,2-bis(methylsulfonyl)-1-(methyl)hydrazine (KS90) are potentially useful anticancer agents. This class of agents frequently yields higher ratios of therapeutically active oxophilic electrophiles responsible for DNA O(6)-guanine alkylations to other electrophiles with lower therapeutic relevance than the nitrosoureas. This results in improved selectivity toward tumors with diminished levels of O(6)-alkylguanine-DNA alkyltransferase (MGMT), the resistance protein responsible for O(6)-alkylguanine repair. The formation of O(6)-(2-chloroethyl)guanine, which leads to the formation of a DNA-DNA interstrand cross-link, accounts for the bulk of the anticancer activity of 90CE prodrugs. Herein, we describe a new decomposition pathway that is available to 90CE but not to its methylating counterpart. This pathway appears to be subject to general/acid base catalysis with phosphate (Pi), phosphomonoesters, and phosphodiesters, being particularly effective. This pathway does not yield a chloroethylating species and results in a major change in nucleophile preference since thiophilic rather than oxophilic electrophiles are produced. Thus, a Pi concentration dependent decrease in DNA-DNA interstand cross-link formation was observed. Changes in 90CE decomposition products but not alkylation kinetics occurred in the presence of Pi since the prebranch point elimination of the N-1 methanesulfinate moiety remained the rate-limiting step. The Pi catalyzed route is expected to dominate at Pi and phosphoester concentrations totaling >25-35 mM. In view of the abundance of Pi and phosphoesters in cells, this pathway may have important effects on agent toxicity, tumor selectivity, and resistance to prodrugs of 90CE. Furthermore, it may be possible to design analogues that diminish this thiophile-generating pathway, which is likely superfluous at best and potentially detrimental to the targeting of hypoxic regions where Pi concentrations can be significantly elevated.
منابع مشابه
Influence of Glutathione and Glutathione S-transferases on DNA Interstrand Cross-Link Formation by 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine, the Active Anticancer Moiety Generated by Laromustine
Prodrugs of 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) are promising anticancer agents. The 90CE moiety is a readily latentiated, short-lived (t1/2 ∼ 30 s) chloroethylating agent that can generate high yields of oxophilic electrophiles responsible for the chloroethylation of the O-6 position of guanine in DNA. These guanine O-6 alkylations are believed to be responsible for the t...
متن کاملCarbamoylating Activity Associated with the Activation of the Antitumor Agent Laromustine Inhibits Angiogenesis by Inducing ASK1-Dependent Endothelial Cell Death
The anticancer agent 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(methylamino)carbonyl]hydrazine (laromustine), upon decomposition in situ, yields methyl isocyanate and the chloroethylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE). 90CE has been shown to kill tumor cells via a proposed mechanism that involves interstrand DNA cross-linking. However, the role of methyl i...
متن کاملAn anticancer agent targeting hypoxic cells
To target malignant cells residing in hypoxic regions of solid tumors, we have designed and synthesized prodrugs generating the cytotoxic alkylating species 1,2-bis(methylsulfonyl)-1-(2chloroethyl)hydrazine (90CE) after bioreductive activation. We postulate that one of these agents, 1,2-bis(methylsulfonyl)-1(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119), requires enzymat...
متن کاملAn in vitro evaluation of the victim and perpetrator potential of the anticancer agent laromustine (VNP40101M), based on reaction phenotyping and inhibition and induction of cytochrome P450 enzymes.
Laromustine (VNP40101M, also known as Cloretazine) is a novel sulfonylhydrazine alkylating (anticancer) agent. Laromustine generates two types of reactive intermediates: 90CE and methylisocyanate. When incubated with rat, dog, monkey, and human liver microsomes, [(14)C]laromustine was converted to 90CE (C-8) and seven other radioactive components (C-1-C-7). There was little difference in the me...
متن کاملMode of action of the chloroethylating and carbamoylating moieties of the prodrug cloretazine.
Cloretazine is an antitumor sulfonylhydrazine prodrug that generates both chloroethylating and carbamoylating species. The cytotoxic potency of these species was analyzed in L1210 leukemia cells using analogues with chloroethylating or carbamoylating function only. Clonogenic assays showed that the chloroethylating-only agent 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) produced ma...
متن کامل